首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3517篇
  免费   385篇
  国内免费   396篇
测绘学   264篇
大气科学   346篇
地球物理   1031篇
地质学   1581篇
海洋学   385篇
天文学   179篇
综合类   175篇
自然地理   337篇
  2024年   7篇
  2023年   42篇
  2022年   147篇
  2021年   163篇
  2020年   169篇
  2019年   141篇
  2018年   261篇
  2017年   212篇
  2016年   247篇
  2015年   185篇
  2014年   246篇
  2013年   262篇
  2012年   190篇
  2011年   220篇
  2010年   176篇
  2009年   176篇
  2008年   140篇
  2007年   120篇
  2006年   103篇
  2005年   84篇
  2004年   90篇
  2003年   83篇
  2002年   123篇
  2001年   109篇
  2000年   73篇
  1999年   50篇
  1998年   62篇
  1997年   59篇
  1996年   39篇
  1995年   45篇
  1994年   30篇
  1993年   30篇
  1992年   34篇
  1991年   20篇
  1990年   17篇
  1989年   22篇
  1988年   9篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   8篇
  1983年   8篇
  1982年   5篇
  1981年   7篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1975年   5篇
  1973年   4篇
  1971年   5篇
排序方式: 共有4298条查询结果,搜索用时 265 毫秒
151.
The pharmacokinetic profiles and sulfamethoxazole (SMX) acetylation process in turbot reared at 18°C were investigated. Either SMX (parent drug) or its acetylized metabolite, N4-acetylsulfamethoxazole (AcSMX), was administered intravascularly to turbot at a dosage of 50 mg/kg BW. Serum concentrations of the parent drug and its metabolite were both measured by HPLC, and the changes in concentration over time were analyzed in two- and non-compartment models because SMX treatment produced multiple peaks. The results demonstrated that the elimination half-life of the parent drugs, SMX and AcSMX, were 159.2 and 5.9 h, respectively. The apparent volume of distribution was 0.2 and 0.8 L/kg, and the clearance was 0.038 and 0.222 L/(h·kg), for SMX and AcSMX, respectively. SMX acetylation in turbot was 2.8%, and the deacetylation of AcSMX was 0.2%. These findings may be useful in optimizing SMX dosage regimens in turbot aquaculture.  相似文献   
152.
In this paper, the numerical methods for solving the problem of steam injection in the heavy oil reservoirs are presented. We consider a 3-dimensional model of 3-phase flow, oil, water, and steam, with the effect of 3-phase relative permeability. Interphase mass transfer of water and steam is considered; oil is assumed nonvolatile. We apply the simultaneous solution approach to solve the corresponding nonlinear discretized partial differential equation in the fully implicit form. The convergence of finite difference scheme is proved by the Rosinger theorem. The heuristic Jacobian-Free-Newton-Krylov (HJFNK) method is proposed for solving the system of algebraic equations. The result of this proposed numerical method is well compared with some experimental results. Our numerical results show that the first iteration of the full approximation scheme (FAS) provides a good initial guess for the Newton method. Therefore, we propose a new hybrid-FAS-HJFNK method while there is no steam in the reservoir. The numerical results show that the hybrid-FAS-HJFNK method converges faster than the HJFNK method.  相似文献   
153.
An accurate estimate of the groundwater inflow to a tunnel is one of the most challenging but essential tasks in tunnel design and construction. Most of the numerical or analytical solutions that have been developed ignore tunnel seepage conditions, material properties and hydraulic-head changes along the tunnel route during the excavation process, leading to inaccurate prediction of inflow rates. A method is introduced that uses MODFLOW code of GMS software to predict inflow rate as the tunnel boring machine (TBM) gradually advances. In this method, the tunnel boundary condition is conceptualized and defined using Drain package, which is simulated by dividing the drilling process into a series of successive intervals based on the tunnel excavation rates. In addition, the drain elevations are specified as the respective tunnel elevations, and the conductance parameters are assigned to intervals, depending on the TBM type and the tunnel seepage condition. The Qomroud water conveyance tunnel, located in Lorestan province of Iran, is 36 km in length. Since the Qomroud tunnel involved groundwater inrush during excavating, it is considered as a good case study to evaluate the presented method. The groundwater inflow to this tunnel during the TBM advance is simulated using the proposed method and the predicted rates are compared with observed rates. The results show that the presented method can satisfactorily predict the inflow rates as the TBM advances.  相似文献   
154.
Understanding the conditions that drive variation in recruitment of key estuarine species can be important for effective conservation and management of their populations. The Olympia oyster (Ostrea lurida) is native to the Pacific coast of North America and has been a target of conservation efforts, though relatively little information on larval recruitment exists across much of its range. This study examined the recruitment of Olympia oysters at biweekly to monthly intervals at four sites in northern San Francisco Bay from 2010 to 2015 (except 2013). Mean monthly temperatures warmed at all sites during the study, while winter (January–April) mean monthly salinity decreased significantly during a wet year (2011), but otherwise remained high as a result of a drought. A recurring peak in oyster recruitment was identified in mid-estuary, in conditions corresponding to a salinity range of 25–30 and >16 °C at the time of settlement (April–November). Higher average salinities and temperatures were positively correlated with greater peak recruitment. Interannual variation in the timing of favorable conditions for recruitment at each site appears to explain geographic and temporal variation in recruitment onset. Higher winter/spring salinities and warmer temperatures at the time of recruitment corresponded with earlier recruitment onset within individual sites. Across all sites, higher winter/spring salinities were also correlated with earlier onset and earlier peak recruitment. Lower winter salinities during 2011 also resulted in a downstream shift in the location of peak recruitment.  相似文献   
155.
While many studies of non-native species have examined either soft-bottom or hard-bottom marine communities, including artificial structures at docks and marinas, formal comparisons across these habitat types are rare. The number of non-indigenous species (NIS) may differ among habitats, due to differences in species delivery (trade history) and susceptibility to invasions. In this study, we quantitatively compared NIS to native species richness and distribution and examined community similarity across hard-bottom and soft-sediment habitats in San Francisco Bay, California (USA). Benthic invertebrates were sampled using settlement panels (hard-bottom habitats) and sediment grabs (soft-bottom habitats) in 13 paired sites, including eight in higher salinity areas and five in lower salinity areas during 2 years. Mean NIS richness was greatest in hard-bottom habitat at high salinity, being significantly higher than each (a) native species at high salinity and (b) NIS richness at low salinity. In contrast, mean NIS richness in soft-bottom communities was not significantly different from native species richness in either high- or low-salinity waters, nor was there a difference in NIS richness between salinities. For hard-bottom communities, NIS represented an average of 79% of total species richness per sample at high salinity and 78% at low salinity, whereas the comparable values for soft bottom were 46 and 60%, respectively. On average, NIS occurred at a significantly higher frequency (percent of samples) than native species for hard-bottom habitats at both salinities, but this was not the case for soft-bottom habitats. Finally, NIS contributed significantly to the existing community structure (dissimilarity) across habitat types and salinities. Our results show that NIS richness and occurrence frequency is highest in hard-bottom and high-salinity habitat for this Bay but also that NIS contribute strongly to species richness and community structure across each habitat evaluated.  相似文献   
156.
The Malayer–Boroujerd plutonic complex (MBPC) in western Iran, consists of a portion of a magmatic arc built by the northeast verging subduction of the Neo-Tethys plate beneath the Central Iranian Microcontinent (CIMC). Middle Jurassic-aged felsic magmatic activity in MBPC is manifested by I-type and S-type granites. The mafic rocks include gabbroic intrusions and dykes and intermediate rocks are dioritic dykes and minor intrusions, as well as mafic microgranular enclaves (MMEs). MBPC Jurassic-aged rocks exhibit arc-like geochemical signatures, as they are LILE- and LREE-enriched and HFSE- and HREE-depleted and display negative Nb–Ta anomalies. The gabbro dykes and intrusions originated from metasomatically enriched garnet-spinel lherzolite [Degree of melting (fmel) ~ 15%] and exhibit negative Nd and positive to slightly negative εHf(T) (+ 3.0 to ? 1.6). The data reveal that evolution of Middle Jurassic magmatism occurred in two stages: (1) deep mantle-crust interplay zone and (2) the shallow level upper crustal magma chamber. The geochemical and isotopic data, as well as trace element modeling, indicate the parent magma for the MBPC S-type granites are products of upper crustal greywacke (fmel: 0.2), while I-type granites formed by partial melting of amphibolitic lower crust (fmel: 0.25) and mixing with upper crustal greywacke melt in a shallow level magma chamber [Degree of mixing (fmix): 0.3]. Mixing between andesitic melt leaving behind a refractory dense cumulates during partial crystallization of mantle-derived magma and lower crustal partial melt most likely produced MMEs (fmix: 0.2). However, enriched and moderately variable εNd(T) (? 3.21 to ? 4.33) and high (87Sr/86Sr)i (0.7085–0.7092) in dioritic intrusions indicate that these magmas are likely experienced assimilation of upper crustal materials. The interpretations of magmatic activity in the MBPC is consistent with the role considered for mantle-derived magma as heat and mass supplier for initiation and evolution of magmatism in continental arc setting, elsewhere.  相似文献   
157.
Normalized difference vegetation index (NDVI) is an important indicator for measuring vegetation coverage, which is of great significance for evaluating vegetation dynamics and vegetation restoration. It can clearly analyze the suitable growth condition of vegetation by studying the relationship between meteorological factors, soil moisture and NDVI. Based on MODIS/NDVI data, the spatio-temporal characteristics of vegetation coverage in the Weihe River Basin (WRB) were analyzed by the trend analysis method. The relationship of NDVI with meteorological factors and NDVI with soil moisture simulated by the soil and water assessment tool (SWAT) model was analyzed in this paper. The results show that NDVI values gradually change with an increase from north to south in the WRB. The maximum of the average monthly NDVI is 0.702 (August) and the minimum is 0.288 in February from 2000 to 2015. The results of the seven grades of NDVI trend line slope indicate that the improvement area of vegetation coverage accounts for 30.93% of the total basin, and the degradation area and basically unchanged area account for 23% and 42.9%, respectively. The annual mean soil moisture is 19.37% in the WRB. There was a strong correlation between NDVI and precipitation, temperature, evaporation and soil moisture, and the correlation coefficients were 0.78, 0.89, 0.71 and 0.65, respectively. The ranges of the most suitable growth conditions for vegetation are 80–145 mm (precipitation), 13–23 °C (temperature), 94–144 mm (evaporation) and 25–33% (soil moisture), respectively.  相似文献   
158.
Estimation of spatial extent of soil erosion, one of the most serious forms of land degradation, is critical because soil erosion has serious implications on soil fertility, water ecosystem, crop productivity and landscape beauty. The primary objective of the current study was to assess and map the soil erosion intensity and sedimentation yield of Potohar region of Pakistan. Potohar is the rainfed region with truncated and complex topography lying at the top of the Indus Basin, the world’s largest irrigation networks of canals and barrages. Spatially explicit Revised Universal Soil Loss Equation (RUSLE) Model integrated with Remote Sensing-GIS techniques was used for detecting/mapping of erosion prone areas and quantification of soil losses. The results show that the Potohar region is highly susceptible to soil erosion with an average annual soil loss of 19 tons ha?1 year?1 of which the maximum erosion (70–208 tons ha?1 year?1) was near the river channels and hilly areas. The sediment yield due to the erosion is as high as 148 tons ha?1 year?1 with an average of 4.3 tons ha?1 year?1. It was found that 2.06% of the total area falls under severe soil erosion, 13.34% under high erosion, 15.35% under moderate soil erosion while 69.25% of the area lies in the low (tolerable) soil erosion. Chakwal and Jhelum districts of the region are seriously affected by erosion owing to their topography and soil properties. The information generated in this study is a step forward towards proper planning and implementation of strategies to control the erosion and for protection of natural resources. It is, hence, necessary that suitable water harvesting structures be made to control water to prevent soil erosion and provision of water in the lean season in this region. Tree plantation and other erosion control practices such as strip cropping can also minimize soil erosion in this region.  相似文献   
159.
Measuring and analyzing internal dam temperature may provide insight into evaluating the integrity of earthen dams. Temperature in a dam, with the advent of modern distributed temperature sensing (DTS) technique, is conveniently measured. The analysis of the temperature is conducted based on a hydro-thermal coupled analysis technique. In this study, DTS-based temperature data and VS2DHI (a finite difference code for analyzing two-dimensional heat transport in porous media) were used to analyze the hydro-thermal coupled behavior in a dam. The results of this analysis show that the temperature variation in an earthen dam is closely related to seepage conditions. Additionally, a localized high-temperature (26 °C) zone found in the measured data of the dam, which raised concern to engineers on site, is explained through either hot water infiltration into the foundation layer or lower permeability of the foundation layer than the magnitude that appeared in the design document. These findings demonstrate that hydro-thermal coupled analysis has the potential for evaluating the integrity of earthen dams.  相似文献   
160.
Air pollution is one of the most important problems in the new era. Detecting the level of air pollution from an image taken by a camera can be informative for the people who are not aware of exact air pollution level be declared daily by some organizations like municipalities. In this paper, we propose a method to predict the level of the air pollution of a location by taking an image by a camera of a smart phone then processing it. We collected an image dataset from city of Tehran. Afterward, we proposed two methods for estimation of level of air pollution. In the first method, the images are preprocessed and then Gabor transform is used to extract features from the images. At the end, two shallow classification methods are employed to model and predict the level of air pollution. In the second proposed method, a Convolutional Neural Network(CNN) is designed to receive a sky image as an input and result a level of air pollution. Some experiments have been done to evaluate the proposed method. The results show that the proposed 9 method has an acceptable accuracy in detection of the air pollution level. Our deep classifier achieved accuracy about 59.38% which is 10 about 6% higher than traditional combination of feature extraction and classification methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号